Thinking Skills and ToonTalk

ToonTalk is a fertile and playful environment for children (of all ages) to learn the following critical
thinking skills:

Problem decomposition. When a child tries to build anything beyond the simplest program in
ToonTalk, they are immediately faced with the task of breaking the problem down into
“robot-sized" (or more ideally "mind-sized") pieces. When done well, it is then easy to build
or program each piece. This is a very general design skill that applies throughout science,
engineering, and the arts as well. For larger problems, there is a hierarchical structure to
this activity, where problems are broken into pieces and the pieces are in turn broken into
smaller pieces.

Component composition. This is the second half or dual to problem decomposition. Just
because one has pieces that work in isolation does not mean that it is trivial Yo compose
them. There are usually interactions between the parts that need to be dealt with. Often
components can be composed in different ways, only a few of which work. Again this is a
very broad design and problem-solving skill. Difficulties composing parts often leads to
redesign of the problem decomposition. Some argue that this is a special case of the more
general "debugging" skills one acquires while programming.

Explicit representation. Software that models something, whether it is a bouncing ball, an
ant colony, city fraffic, or an ecology, needs to have data structures that represent
something else. For the ball, the child may create a structure that holds the ball's position,
speed and direction of motion. For an ant it may be the ant's level of hunger, energy, and a
representation of the state of various sensors. The ability to design a good representation
for a model is critical in science and engineering.

Abstraction. This is related o "explicit representation”. Software can be very specific or
very general. Consider for example the sample program in ToonTalk which swaps two
numbers when the first is bigger than the second. When first constructed the program only
works when the first number is 2 and the second one is 1. It is then abstracted to work for
any two numbers where the first is larger than the second. It could have been abstracted
so that it would work for words as well as numbers. If a word is alphabetically after
another, then the robot would swap them. The ability to abstract when needed is a crucial
thinking skill. ToonTalk is special in that it encourages children to work through concrete
examples and then abstract the results.

Thinking about thinking. Seymour Papert has written extensively about how the right
programming environment can facilitate children thinking explicitly about how they solve
problems. (See his books Mindstorms, Children's Machine, and The Connected Family.) If,
for example, a child is trying to build a program to play tic-tac-toe, they are faced with
questions of how the computer is going to decide which move to make. They need to think
explicitly about how they make such decisions in order to program the computer to do so.
Papert claims that one becomes a better learner and a better designer and a better
problem-solver if one is able to explicitly reflect upon one's own thought processes. And
this reflection is much more effective if one has some model of thinking skills like the list
presented here.



The argument for ToonTalk isn't that it, or even computer programming in general, is unique in
providing an environment for learning these thinking skills. But that ToonTalk is a rich environment
where these kinds of thinking skills are "exercised" frequently in a natural context. ToonTalk is an
environment in which there are fewer hurdles to overcome (like a programming language syntax or
learning to play a musical instrument and to read music) before one begins o be productive and
begins to learn these thinking skills. ToonTalk is a fun, appealing environment that maintains a
child's motivation.



